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A METHOD OF SOLVING PROBLEMS OF THE LINEAR THEORY OF ELASTICITY* 

A.G. POKIN 

A method is developed for solving linear boundary value problems, based 
on their interpretation in the spirit of functional analyS.iS. In the 
special case of the theory of elasticity, the stress and strain fields 
are considered as elements of a real Hilbert space of symmetric tensors 
of the second rank. On the basis of the second derivative of Green's 
tensor of the equilibrium equations, projection operators P and B are 
constructed that satisfy the equation P+v=I. The solution of the mixed 
boundary value problem is represented in the form of Neumann series, whose 
sufficient conditions for convergence are written in the form of operator 
inequalities which lend themselves to a simple interpretation in the 
language of energy functionals. By strengthening these conditions we can 
express them in terms of the closeness of the coefficients of the problem 
h and h, . A representation of the potential energy is given in the 
form of a certain functional which can always be expanded in series. 
The limits within which the exact value of the potential energy lies is 
obtained. 

The purpose of this paper is to develop a method for solving linear 
boundary value problem based on the formalism of Green's tensors on the 
one hand, and on the interpretation of these problems in the spirit of 
functional analysis, on the other. Consideration of the stress field (T 
and strain field e as elements of a real Hilbert space H of symmetric 
tensors of the second rank and the introduction of the operators P and Q, 
constructed on the basis of Green's tensor G and acting in the space H, 

enable a transfer to be made from the equilibrium equation to a functional 
equation of the form (1.13). The iteration method often utilized to 
solve such equations results in a solution in the form of the Neumann 
series (1.15) whose convergence conditions are not always evident. 

It is assumed that the elastic properties of the medium under invest- 
igation are described by a symmetric fourth-rank tensor 5 = I(r). (Here 
and henceforth, the tensor subscripts are omitted, for simplicity, almost 
everywhere, and the vector quantities are denoted by heavy type. In the 
product AkSl of the tensor Ak of rank k and the tensor B, of rank I the 
summation is over all subscripts of the tensor B, if l< k and over the n 
inner subscripts of the tensors Ar and Bl if k=l=2n). 

A medium for which the solution of the initial problem is known is 
used as the auxiliary medium (the comparison medium). Its elastic propert- 
ies are described by the tensor t. Without limiting the generality, we 
consider h and ke symmetric operators (see Sect.2). This enables the method 
to be extended to viscoelastic media and a medium with a microstructure. 
Important relations are obtained in Sect.2 for the operators P and Q and 
their associated P,T. It is shown that these belong to the class of 
projections. This circumstance exerts a substantial influence on the form 
of the convergence conditions for series (2.14). By rounding off the 
sufficient conditions for (3.4) and (3.5) to converge, we obtain conditions 
(3.7) and (3.8) (or (3.1111, whichwhen Ireb#I turn out to be independent 
and can be satisfied simultaneously. 

A representation of .the potential energy U in the form of functionals 
computed using the auxiliary fields sc and a, referred to the comparison 
medium, is given in Sect.4. It is shown in Sect.5 that the energy u' is 
representable in the form of the series (5.1) or (5.2) whose sign-definite- 
ness depends on the properties of the functionals ik or my , respectively. 
In any case the limits within which the exact value of u' lies can be 
computed. 
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1. Consider the equilibrium equation for an arbitrary linear elastic medium with the 
boundary conditions 

Lu = -f, L = div h def as VhV,r E V il.11 
u=uo, rES1; t==te, re& Cl.?! 
t = an, u = he, S, U S, = S 

Here u is the displacement vector, f is the vector of the volume density of the external 
forces, and n is the unit vector of the external normal to the surface S bounding the volume 
V of this medium. The strain tensor e is related to the displacement vector by the relation- 
ship e= defu, as a result of which it satisfies the compatibility equation /l/ 

Ink e = 0, Ink Ifkl = eipkedpVq (1.3) 

where summation is over the subscripts that appear twice. 
In addition to (l.l)-(1.3),we will assume that there are analogous equations for the 

comparison medium to which the transition is made by replacing b by h,. The fields correspond- 
ing to this medium are denoted by the additional subscript c. 

We will now find the relation between the fields e and 8,‘. To this end we introduce the 
difference field u1 = u -u~~u', to which the stresses e1 = X, e, correspond in the medium 
with the elastic properties h,, where e, = defu, = B'. Evidently o,# cr' = (T - LI,. Using the 
polarization stress tensor z /l/, we can write 

e' = o,+ r = h,e' + r (1.4) 

Subtracting the equation and boundary conditions forthecomparison medium, respectively, 
from (1.1) and the boundary conditions (1.2), and taking into account that the externaleffects 
are identical in both cases, we obtain an equation with the boundary conditions 

Leul=-ffl, II=%, ?EV (1.5) 

ul=o, rE&; tl=-?II, rES* 

We will find the solution of problem (1.5) by using Green's tensor G(r,rJ that satisfies 
the equation /2, 3/ and homogeneous boundary conditions 

L,G (r, cl) = - 6 (r Y- g); r, rlE Jf (1.6) 

G(r,rl)=O, r~&; T(r,r3=0, rE&; rlE67 

Ttt (r, rJ = +fbrlVr Gtj (r, rJ 

We will change to the polarization stresses '5 in the integrands in the general solution 
of problem (1.51, and we will use Gauss's theorem. We obtain 

UC' (t) = - S zjt (rl) Vt’G*j (c, rd dvs + AU+’ fr) (1.7) 

AU+’ (r) = S [Gji (R, r) tjl (~1) - Tji (?I, r) ~9’ (R)] ids (cl), t’ I=;: oh 

where pl is the nabla opexator for the coordinate rl. 
The solution (1.7) contains the surface integral but’(r) that equals zero within the 

domain and is not defined on the boundary S since its integral is zero at all points of the 
surface of integration, except the one where it becomes infinite. The limit values of this 

integral equal zero. Taking this remark into account, we will later write solution (1.7) 
without the term but’(r). 

The strain field 

(1.8) 

corresponds to the displacement field (1.7), where symmetrization is performed over the sub- 
scripts in parentheses, and the subscriptlr denotes differentiation corresponding to the 
operator Vi’. 

Let us rewrite (1.8) in the, form 

e' = QT, Qijkr (I’, n) = - VttGj)(k. 1%) (r* rd (1.9) 

Here the integral operator Q and its kernel Q(c,rJ are denoted by the same letter. 
Substituting (1.9) into (1.4), we find 

a' = P?j, n = --j&r (1.10) 

where the integral operator P is related to Q by the relationships 

- P = h, + h,Q& - Q = pc -!- @p,; b, = f (1.11) 

Formulas (1.9) and (1.10) agree in form with the analogous relationships in /4/, but 
they are obtained here in the more general case. 

Expressing r in (1.4) in terms of n , we obtain 

E' = &cl' f r\ (1.12) 



Here q is a polarization strain tensor playing a part analogous 
tions 

'c = A'E,T = ~'C&X = x - I,, hp = I 

result from (1.4) and (1.12) and are used to reduce (1.9) and (1.10) 
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to z in (1.4). The equa- 

to the form 

E = E, + QT = E, + QA’E, u = u, + Pq = u, + Pp’u (1.13) 

The relationships obtained are inhomogeneous linear integral equations of the second 

kind /3/. In the case under consideration the domain of integration V is fixed, in which 
connection (1.13) are sometimes called integral equations of Fredholm type /3/. The solution 
of each enables the unknown fields u and E to be expressed in terms of the known uc and EC. 
which is equivalent to the solution of problem (1.1) and (1.2). Therefore, any of the equa- 
tions (1.13) is equivalent to the problem (l.l), (1.2). (This fact lends itself to the con- 
sideration under which equations (1.13) are mutually independent. In this case, however, it 
is necessary to use two comparison media whose elastic properties are described by the tensors 
A&l) C h, and h,(') s pc-' , respectively. obviousiy, h&,# 1). The displacement vector u can 
be found from (1.7). 

On the other hand, relationships (1.13) can be interpreted as functional equations in a 
real Hilbert space II of symmetric second-rank tensors. The solution of equations (1.13) is 
here reduced to the problem of seeking operators a and b in the form 

a = (I - x)-l, X = Q?.‘; b = (I - Y)-I, Y = Pp’ (1.14) 

which are representable, under certain conditions, in the form of Neumann series /3, 5/ 

a=5 x", 
k-a 

b=kgYk (1.15) 

Before investigating the conditions under which the expansions (1.15) are possible, we 
will obtain certain equalities for the operators P and Q. 

2. We define the scalar product of two elements e and u of the space H denoted by (E,(I) 
by the equality 

(e,U)=SeijQijCt!V. dVS+ (2.1) 

In this paper, symmetric (Hermitian) operators are utilized, i.e., those operators satis- 
fying the equation A+ = A, where the superscript plus denotes the conjugate operations which 
reduces to transposition, defined by the relationships /3, 5/ 

(81, As,) = @+81t Er) (2.2) 

in the case of real fields under consideration. 
Taking account of (2.2) and (l.l), the operator Q introduced in (1.9) can be represented 

in the form 
Q = -QMQ+ (2.3) 

where M is an integral operator whose kernel is Green's tensor G. 
We will show that the operator Q is symmetric. To'this end, we operate with the operator 

"plus" on both sides of (2.3). This yields 

0' = _(QMQ+)+ = _ (Q+)+M+Q+ 

Taking into account the reciprocity theorem that has the meaning of a symmetry condition 
for the operator M, and also the equation (Q+)+ = Q, we obtain 0' = Q. &cause of (1.11) 
the operator P is also symmertic. The symmetry condition is considered satisfied for h and 1,. 

We will examine the scalar product (.!.',a'), which, by virtue of (1.91, (1.10) and (2..2), 
equals 

(e', a') = (Or, JY) = (r, Q+Prl) = (T, QPTJ) 
On the other hand, the following equation holds 

'1 
(e', a') = 7 

s 
UYds- 

s 
u'divo'dv 

in which the surface integral (exactly equal to zero because, of the boundary conditions (1.5)) 
should generally be omitted in connection with the procedure for computing volume integrals 
containing the difference fields introduced in obtaining (1.8) from (1.7). The volume in- 
tegral on the right side of this equation vanishes because of (1.5) written in the form 
Qu' = 0 taking (1.4) into account. Therefore, we finally obtain 

(7, QPq) = (rlv J’W = 0 (2.4) 

Equations (2.4) enable important relationships for the operators P and Q to be derived. 
Substituting the operator P from (1.11) into (2.4) and expressing 9 in terms of r using (l.lO), 
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we find 

or in operator form 

Q + Q&Q = 0 (2.6) 
Because the integral form (E',&E') is positive, (2.5) means that the operator n is nega- 

tive definite in the sense of the inequality (T, Q?)(O). Substituting the operator Q from 
(1.11) into (2.4), we can write in an analogous manner 

(TIV Ptl) = - (% &@l) = -(P1, P&l) (2.7) 

or in operator form 

P + P@ = 0 (2.8) 

Because of (u', &) is positive (2.7) means that the operator P is negative definite, 
i.e. ('(1, Pq)<O. 

Two fields e and u = he belonging to the space H but being distinguishable by the 
dimensional factor h are in the computations presented above. However, it is more convenient 
to be rid of these differences by making both fields identical in the dimensional sense. This 
can be achieved by multiplying the fields c and e by the symmetric positive operatorsp;/land 
X:1* , respectively. Because h, is positive and symmetrical the representation J., = (&%)2 is 
single-valued /5/. 

We will introduce the following notation for the fields and operators: 

5 =&Y, 5 = h;lPe; p = - I*;"ppyz, Q = z h:'*Q&;" 

Equations (1.13) take the form 

(2.9) 

From (1.11) we obtain 

P+iJ=I (2.10) 

and (2.6) and (2.8) become 

HZ = H, Q" = Q (2.11) 

Because of (2.10) and (2.11) the positive symmetric operators P and Q possess the propert- 
ies of projection operators /5/. Therefore, the space H is representable in the form of the 
sum H,+H, of two subspaces which are mutual orthogonal complements. The inequalities /5/ 

O<P<I,O<Q<I (2.12) 

are valid for the projection operators P and Q , where the left values hold when H1 or H1 

consist of one zero element while the right values hold if Hlor H1 agree with Ii. 
Finally, we note that the solutions of (2.9) have the form 

E e fi&, ii = )&$‘l’; 3 a 6?j,, 6 = p;“b?$’ 

where we will have, in the same way as for (1.14) and (l.lS), for the operators (z and 6 

(2.13) 

(2.14) 

It is possible to represent ci and 6 in the form of series, provided they converge, which 
we now investigate. 

3. The uniform convergence (in the norm) of the series (2.14) is examined below. We 
shall say /5/ that the sequence a(,) converges to d in the norm if II&,) -till- 0 as u--+ m. 

As is well-known, the concept of a norm is directly related to the scalar product (2.1). By 
definition, we have /3, 5/ '(A is a certain operator) 

3.11 

According to a Banach theorem /6/, the operator (1 -X) has a continuous inverse operator 
ti of the form (2.14) if the norm of the operatorx satisfies the inequality IIzyII.< k,< 1. 
The necessary and sufficient condition for the series d from (2.14) to converge is /6/ conpli- 

ante with the inequalities 11 X"II < k,< 1 for a certain n. 
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According to the definition (3.1), the condition of the Banach theorem (the convergence 
of the first series in (2.14)) can be written in the form 

II X/Ii* = (I, X+X/) < h* (f, f) = b2 II f II*, 0 # f E H (3.2) 

where, unlike 1, the operator x+x possesses the property of symmetry. Rewriting (3.2) in 
operator form and taking account of (2.11), we obtain 

p@' Q k,=i < I, (3.3) 

Returning to the initial quantities, we hence find 

- h’Qh’ < k,%,, 0 < k, < 1 (3.4) 

Inequality (3.4) is the sufficient condition for the first series in (2.14) to converge, 
and therefore, the series a from (1.15) also. By using analogous reasoning, we write the 
sufficient condition for the second series in (2.14) and b from (1.15) to converge in the 
form of the operator equation 

-p’Pp’ < k,Spc, 0 Q k, c 1 (3.5) 

Relying on the property of the operator Q of the form g < I, we will have from (3.3) 

p@ <p=< kl=I (3.6) 

It is seen that condition (3.6) results inthe sufficient condition for the first series 
in (2.14) and (1.15) to converge in the form 

(1 - k,) h, < h < (1 + k,) A,. 0 < k, C 1 (3.7) 

In a similar manner the sufficient condition for the second series in (2.14) and (1.15) 
to converge can be written in the form 

(1 - k2) PC Q P < (1 + k,) P,, 0 < k, < 1 (3.8) 

It can be shown that the inequalities (3.7) are equivalent to the corresponding inequal- 
ities for the potential energies. 

For simplicity, we will examine the case of homogeneous boundary conditions and no ex- 
ternal forces f . Then the potential energies U(E) =V1(e,he) and ~,(e~)=V~(~.&,g)of the in- 
vestigated and auxiliary media satisfy the following inequalities because of the theorem on 
the minimum of the potential energy 

u (e) g U (ee), Ue (e,) B UC (a) (3.9) 

Combining inequalities (3.9) and (3.7), we can write 

(i - k,) UC (4) d U (6) d (i + k,) UC (ec) (3.10) 

Similarly, inequalities (3.S), together with the theorem on the minimum of the additional 
energy, also result in inequalities of the form (3.10). 

The inequalities (3.7) or (3.10) can be interpreted as constraints imposed on the elastic 
properties of the medium under investigation provided that they are given for the auxiliary 
medium. Since usually it is h that will be given from the very beginning, it is more conven- 
ient to rewrite inequalities (3.7) and (3.8) in the form of constraints imposed on the elastic 
properties of the auxiliary medium. 

By (3.7) and (3.0), the parameters h, and IL, should satisfy the inequalities 

(3.11) 

Taking account of the assumed boundedness of h and p we can conclude that the right sides 
of inequalities (3.11) result in the inequalities (~=,h,, E,)< c, and (u,,~~o,)< C, which 
impose no substantial constraints on the selection of the parameters &and p,. On the other 
hand, the left sides of. the inequalities (3.11) determine the domains of values of the para- 
meters A, and p'e that satisfy the sufficient conditions for convergence. 

Analyzing these inequalities, we arrive at the conclusion that under certain conditions, 
a domain of values of the parameter ?,c = PC-' can exist that satisfy both left inequalities 
(3.11). In this case both expansions hold even for the fields _I and 8 ((2.13) and (2.14)). 
In general, it can just be asserted that one of the parameters &or p,, related by the equa- 
tion hc)_te=I, can always be selected in such a way that the sufficient 'conditions for one of 
the series (2.14) to converge would be satisfied. Finding one of the fields e or a in the 
form of a convergent Neumann series enables the other to be calculated using the relations 
o=he or e=pa. 

If the parameters hc and e, are not related by the equation &pc= I, the constraints 
(3.11) are mutually independent. In this case, by selecting il,- and pc from (3.11), we will 
have a basis for using both series (2.14). 

4. Let us consider the elastic strain energy /2/ 
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W = J WdV G V (W), 2~ = EijUi/ = Ti,Ziji 

where the braces denote averaging over the volume V. Keeping in mind the definition of the 
scalar product (2.11, we can hence write 

2 {w) = (e, u) = (F, 8) (4.1) 

We can express the energy W in terms of the field E, To this end, we will rewrite (4.1) 
in the form 

(a, (J) = (EC, (J) + (e', UC) (4.21 

by using the equation (E', u) = (e', a,) 
Taking into account the equations u=he= h'e + h,e = h'ef h,e'$ u,, we obtain from (4.1) 

and (4.2) 

2 {WI = (e,, a,) f (e,, h’e) + 2 (e’, 0,) (4.3) 

The first term on the right side of (4.3) is the elastic strain energy 2W,/V in the 
comparison medium, while the latter is determined by external effects (surface and volume). 
To eliminate it, we introduce the potential energy /2/ 

U= W-JutdS,-jufdV (4.41 

Subtracting the potential energy U, from (4.4) 

u's U- UC= W’-j&d&--Su’fdV, X’EX-X~ 

and passing here from a surface to a volume integral, we obtain 

U'=W' - V (e’, a) = W’ - V (e’, a,) 
Taking account of (4.3), we hence find 

U'fV z IL' = l/a (e,, h'e) = 'In (Z,, X'E) (4.5) 

Furthermore, we use the solution of (2.13) for the field 5 in the form f = (1 -x)-l& 
which is valid if and only if the corresponding Neumann series diverges. Substituting it into 
(4.5), we obtain 

2~’ = (2e,‘, [Q + ~l-%J, q7.’ = I (4.6) 

In addition to (4.6), a representation of the energy u'in terms of the field 3, is pas- 
sible. Instead of (4.3), we find similarly 

2 (w) = (a,, 0,) + (u,, ~'0) + 2 (sc. 0') (4.7) 

Transforming the potential energy (4.4) to the form 

U = JutdS, - W 

and using (4.7), we arrive at the equation 

u' = -'/1(uC, p'u) = --'/, (a,, F'S) (4.8) 

Substituting into (4.S)the solution (2.13) for the field 5 in the form 5 = (I-_)-%, 
which holds in general, we shall have in place of (4.6) 

2u'= - (&,[p+ P]_'8J, pj = I (4.9) 

Formulas (4.6) and (4.9) enable us to calculate the energy u'by two eqUiVaknt means. 
Comparing (4.6) and (4.9), we note that 

-(B+p)=B+q (4.10) 

On the other hand, (4.10) follows from (2.10) and the relationship a + q = -1 which 
can easily be established. 

5. Let the conditions for the series (r and 6 to converge be satisfied. Then taking 
account of (2.13) and (2.14), respectively, we obtain from (4.5) and (4.8) 

m 

2u’=-xmk, mk s (uc, ~‘a,) = (ii,, F%,), Ck E Yko, (5.2) 

(ek = h;“i,, Uk = g%,) 

The representation of the potential energy in the form of converging number series (5.1) 
and (5.2) enables us to obtain approximate solutions for u'as well as the limits +/within 
which the value of U' lies. 

we will first investigate the fixed-sign property of the series (5.1) and (5.2). The 
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symmetry of the operators utilized as well as the properties (2.11) of the projection operators 
P and 3 enable us to write 

By using (5.3) and the 

Correspondingly, (5.3) and the definition (2.2) and (5.2) yield 

gx=x, x+_-pg, Py=L,F+=-;,P 

definitions (2.2) and (5.1), it can be shown that 

(&,, X,EJ = c,,, 
- -_ 

K4+J= . . . = (Pc’blE_) 
_ -_ 

(5.3) 

(5.4) 

(5.5) 

The functionals lk and m)r, defined by (5.1) and (5.2), can also be represented in the fol- 
lowing form using (5.4) and (5.5): 

_ -_ - _ _ -_ 
llk=(ek, A'e,), lar_r = -(.+ elr , ) mlk = (ok. P’ek); -km1 = - 6k. zk) (5.6) 

It follows from (3.6) that the functionals 4k_% and m,r_, are negative, while the signs 
of the functionals 4k and m,k are determined by the value of the parameters L and cc. Let r, 

and p,be such that J.'~(I and ~'50. In general, bc and ps cannot here be related by the 
equation ?.+ = I. We then have from (5.6) 4k3 0 and %ksO, i.e., series (5.1) and (5.2) 
will possess opposite sign-definiteness. 

To obtain the boundaries for PI , auxiliary inequalities are needed whose derivation is 
based on (5.6) taking the signs into account. Because of the positivity of scalar products 
of the form (j,f) , the inequalities 

hold. 

1 Ik--l+2L1k+‘Sk+1<0’ 1~~k+&+,,ek#o 

m,,,+2mak+m,k+r<0, f=O,+O,,,a,#O 

(5.7) 

Similarly, using the inequalities (t,i;'t)tO and (j,?fi@O, we can write 

I,, + %r+r + &+*10* r't0 (5.8) 
%k +2m%k+1 + mak+rPoV fi'2' 

Summing inequalities (5.7) and (5.8) with respect to kbetweenn and DD, we obtain 

2 i l,<z,,_,<o, 
*n--l 

2,!_l mk<m~_~<o~ n>i (5.9) 

(5.10) 

We will first examine the case when A'>0 and p'<O when series (5.1) is sign-varying 
while (5.2) is sign-constant. Taking into account that 

and also inequalities (5.9) and (5.10), we find from (5.1) and (5.2), respectively 

*n--l n 

i 1 <2U'- T 2n CI 
', +- &,,_,. -2U'< 

c 
mk 

0 0 
(5.11) 

Therefore, utilization of the first expansion from (2.14) results in bilateral limits, 
and of the second in just the lower limit for the energy 11‘. We will have in the zeroth, 
first and second approximations from (5.11) 

'I& < 2u’ < lo. -2~’ < m, (5.12) 
10 + 1, < 2u’ < lo + ‘I, l,, -‘2u’ < m, + ml 

10 + 11 + ‘l,l, < 2u’ < 1, + 1, + l,, -2~’ < m, + m, + m, 

NOW, let A'< 0 and p'>O. In this case, series (5.1) will be sign-constant, and 
(5.2) sign-varying. Utilizing inequalities (5.9) and (5.10), we obtain from (5.1) and (5.2) 

It hence follows that the first expansion from (2.14) results only in the upper limit, 
and the second results in the bilateral limits for the energy u'. In the zeroth, first and 
second approximations we find from (5.13) 
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2u’ < lo, l:zm, < -2u’ < m, 

2u’ < 1, + l,, m, + m, < -2u’ < m, + l:izrnl 

211’ < 10 f 1, + l,, m, + m, + ‘l,m, < -2~’ < m, + m, f m, 

It is seen from (5.11)-(5.14) that we have bilaterial limits for the 
case. To obtain them it is necessary here to use the first expansion from 
and the second if P'> 0. 

(5.14) 

energy ur in any 

(2.14) if 1' > 0 

If the selection of the parameters h, and pe 
sign-definiteness of h'and p', 

is not constrained by the requirement of 
we will have the following boundaries instead of (5.11) and 

(5.13) 
m--1 

- z m--1 
1 

mk + 7 m2n-l 
0 

< 2u’ < c 1, - f l?,_] 
” 

!S .15) 

constructed on the basis of inequalities (5.7) which hold in general. 

6. Inequalities analogous to (3.10) can be set up intheproblem of estimating the error 
due to replacing the solution of problem (1.1) by the solution U, of the problem obtained from 
(1.1) by replacing L by L.,/8/. Assuming the operators L andL, to be positive definite and 
"semi-convergent" the following inequalities /l, 8/ turn out to be valid 

a I ” le’6 1 ” /* < p I u I,‘, I UP = (u, m, lu I,’ = WC* L,uJ (6 .l) 
where the fields e, ec satisfy homogeneous boundary conditions. The quantities OL and fi are 
found from the solution of the generalized eigennumber problem for the operator L of the form 
Lu- XL,U.= 0, and respectively equal to a=infx',f, = SUPX”, where x’ is the minimum and X" the 
maximum of the eigennumbers /7/. No constraints have here been imposed on a and p and, there- 
fore, on L and L,. 

Unlike (6.1), inequalities (3.10) take account of the fact that the first series in (2.14), 
in which the operator Q is constructed using L,, converges. Consequently, e and fi cannot be 
arbitrary but must satisfy certain constraints. In particular, the following inequalities 
result from (3.10): 

O<i-k~a<~~l+k<Z, k skk, (6.2) 

The possibility should also be pointed out of another approach to the solution of problem 
(l.l), namely, the application of an iteration method directly to analyze the displacement 
field u. However, taking account of the boundary conditions in the form (1.2) complicates 
the construction considerably. In the special case of the first boundary value problem (the 
Dirichlet problem), the solution for the field u can be represented in the form 

u=Uc+ML’u, L’=L-L e (6.3) 

where M is the operator whose kernel is Green's tensor G. Equation (6.3) is similar in form 
to (1.13) and (2.9) as they are all inhomogeneous integral equations of the second kind. 
Solving it by iterations, we can write in the same was as for (1.15) and (2.14) 

(6.4) 

Series (6.4) converges provided that IIML’II<k<l, which can be written in the form 

II ML’ II Q II M II II L’ II < k < 1 (6.5) 

Inequalities similar to (6.5) were utilized in /8/ to find the stability criterion for 
the approximate solution of equations of type (1.1). The convergence conditions (6.5) for 
the series (6.4) cannot, however be converted to the form (3.7), and even more (3.0). To 
obtain inequalities of the type (6.5) but containing the pliabilities p and pc , it is 
necessary to go from the equilibrium equation (1.1) to the incompatibility equation /l, 2/. 
The reasoning presented agrees with the. remark made by S.G. Mikhiin /7/ about the passage 
from constant coefficients X in (1.1) to variable coefficients. It is indicated that such 
an approach produces serious difficulties in the utilization of such methods as the method of 
integral equations or the method of Green's function, especially when seeking elementary 
particular solutions. 

A method is proposed in a published paper for solving a fairly broad class of linear 
boundary value problems in the form (1.1) and (1.2). It is based on the above-mentioned 
methods of Green's function and integral equations. Some of the difficulties originating 
here are overcome by introducing the projection operators P and Q. Utilization of an auxil- 

iary medium enables a solution tobe foundtosuchproblems, which cannot be solved (or their 
solution is quite difficult) by direct methods. This holds particularly in the case of in- 
homogeneous and anisotropic media. 



323 

1. 
2. 
3. 

4. 

5. 
6. 
7. 
8. 

REFERENCES 

ESHELBY J., Continuum Theory of Dislocations. Izd. Inostr. Lit., Moscow, 1963. 
NOWACKI W., Theory of Elasticity, Mir, Moscow, 1975. 
K0P.N G. and KORN T., Handbook of Mathmematics for Scientists and Engineers. Nauka, Moscow, 

1974. 
FOKIN A.G., Effective elastic moduli of inhomogeneous media in the case of potential and 
bivortical tensor fields. PMM, Vo1.41, No.1, 1977. 

RIESZ F. and SZEKEFALVI-NAGY B., Lectures on Functional Analysis, Mir, Moscow, 1979. 
KANTOROVICH L.V. and AKILOV G.P., Functional Analysis, Nauka, Moscow, 1977. 
MIKHLIN S.G., Variational Methods in Mathematical Physics,,Nauka, Moscow, 1970. 
MIKHLIN S-G., Numerical Realization of Variational Methods, Nauka, Moscow, 1966. 

Translated by M.D.F. 

PMM U.S.S.R.,Vol.48,No.3,pp.323-327,1984 0021-8928/84 $lO.OO+O.OO 
Printed in Great Britain 01985 Pergamon Press Ltd. 

ON A PERIODIC MIXED PROBLEM FOR A STRIP* 

N.I. MIRONENKO 

The periodic problem of the action of rigid stamps on a strip is cpnsidered. 
The foundations of the stamps are assumed to be arbitrarily convex and 
symmetric about their vertical axes. The problem is reduced to dual 
summation equations by a traditional method. Two cases are studied: 
the corners of the stamp press on the strip (the width of the contact area 
is known), and the corners of the stamp do not reach the strip (the 
width of the contact area is unknown). The solution for stamps with flat 
bases follows as a special case from the solution obtained. This is 
simultaneously the solution (apart from sign and notation) of a certain 
doubly-periodic problem for a plane with slits. 

The problem under consideration has been studied by other methods in 
/l-3/. 

1. The domain of the strip to be studied lies in the complex z = z+ iy plane (see Fig. 
1 on which the base of the stamps is shown flat for simplicity). The stamps acting on a strip 
from both sides have identical width and are arranged symmetrically with period 2b. Therefore, 
the problem is periodic, and, consequently, 
-b < z Q b. 

we refer all reasoning to the fundamental period 

We will write the boundary conditions forthe upper boundary y = a 

u = -f (z),lzl< c (1.1) 

Y,=O,c<lzI<b 
X,=0, Izl<b 

The form of the function j(s)will be indicated below. We 
denote the pressure under the stamps by Y,,(z) then the load 

Y", (4 on the faces of the strip can be represented as follows: 

I Y”I (4, I 2 I < c 

Fig.1 
Y”” cq = I ;xy.(4=0, lsl<b 

0, c<lzl<b 
(1.2) 

We expand the periodic load Yy,, (2) in a Fourier series 

(1.3) 
M 

’ &)=_a i Y,, (t) dz, a, = + s” Y,, (2) ~0s %,T & 
0 0 

ials 
We now rewrite the boundary conditions (1.1) by using the Kolosov-Muskhelishvili potent- 

*Prikl.Matem.Mekhan.,48,3,447-453,1984 


